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Abstract 

An important aspect of automating instruments is automating the 
detection of system malfunctions that render the generated data 
unanalyzable. This paper describes a set of algorithms that have 
been developed to detect and measure features associated with 
symptoms of analysis failure in gas chromatograms. Each algorithm 
is individually tested and validated qualitatively by comparing the 
algorithm output with the opinions of experienced 
chromatographers. When these algorithms are input into an expert 
system, the output can be used to detect and diagnose the 
underlying malfunction that causes the symptoms. 

Introduction 

The increasing demand for sample analyses has increased the 
need for instrument automation. Currently chromatography 
instruments can be automated with autosamplers, which allow 
for the unattended analysis of large batches of samples. How­
ever, chromatography data continue to be evaluated by expe­
rienced technicians to determine if the data are suitable for 
analysis. If a batch of samples is run unattended, the data from 
each sample are not evaluated when they are generated. A 
failure in either the sample preparation or the equipment 
operation can render the analysis (and potentially the analyses 
of the remaining samples in the batch) useless. In addition, 
continued operation of an instrument after a fault has occurred 
can result in instrument damage. 

An important aspect of automating instruments is the rapid 
and accurate detection and diagnosis of sample preparation 
failures or instrument malfunctions (1). A system has been 
developed to detect and diagnose gas chromatography (GC) 
analysis failure automatically. This analysis assessment system 
consists of algorithms that can be used to detect symptoms of 
an analysis fault and an expert system that uses the symptoms 
to diagnose the fault (2). Specific problems related to both 
instrument malfunction and sample preparation can be iden-
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tified. Automatic detection and identification of malfunctions 
can be used to terminate batch processing, notify operators of 
the malfunction, or signal the instrument to correct the 
problem. For instance, the detection of an inappropriately con­
centrated sample can be used to run a procedure that cleans 
the instrument automatically before analysis of the next sample 
in the batch. 

In this article, a set of algorithms is described that has been 
developed to detect and measure features associated with symp­
toms of analysis failure in gas chromatograms. Algorithms 
were developed to identify features that are commonly used to 
troubleshoot chromatography data. Chromatogram features 
were chosen from instrument troubleshooting guides and prior 
work in this field (3-5). A list of algorithms developed in this 
project appears in Table I. Information flow through the 
assessment system is depicted in Figure 1. As shown in Figure 
1, a chromatogram is processed into a symptom file that con­
tains the output of the symptom detection algorithms. The 
symptom file is passed to an expert system that diagnoses any 
fault which produces the symptoms (other groups have devel­
oped feature extraction systems for a neural network fault-
diagnostic system [T. Lu and J. Lerner. Spectroscopy and hybrid 
neural network analysis. IEEE Proceedings, in press.]). 

Symptom detection algorithms result in either a binary 
value or a fuzzy value (Table I). Binary values are produced for 
symptoms that are either present or absent, such as clipped 
peaks. Fuzzy values are produced for symptoms that are pre­
sent in varying degrees, such as leading peaks. Thresholds are 
used to determine the precise output value for each symptom. 
Thresholds for algorithms with binary outputs are determined 
by the occurrence of a single event; thresholds for algorithms 
with fuzzy outputs are determined through a statistical study 
of acceptable and faulty data. All output values are mapped on 
a 0-1 scale; 0 indicates the complete absence of a symptom, 
and 1 indicates the maximum expected degree of severity. 

It is not feasible to search for all symptoms in all types of 
samples. For example, it is not reasonable to apply algorithms 
that are used to measure peak features to the chromatogram of 
a blank sample in which no peaks are expected. For this reason, 
chromatograms are classified by sample type for processing by 
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Experimental 

Data were generated on Varian 3600 and Varian 3400 GC 
instruments (Walnut Creek, CA). To generate data that con­
tained identifiable symptoms, faults were induced in the instru­
ment or sample before analysis. The induced faults tested were 
an overconcentrated sample, a leaking septum, column bleed, 
column degradation, a contaminated injector, loss of makeup 
gas pressure, and a leaking syringe. 

Blank samples consisted of hexane. A standard sample of 
five pesticides (0.1 pg/μL lindane, 0.2 pg/μL heptachlor, 
0.1 pg/μL aldrin, 0.2 pg/μL dieldrin, and 1.2 pg/μL methoxy-
chlor) was created. Concentrations were increased by a factor 
of 100 to generate overconcentrated samples. One hundred 
thirty chromatograms of this standard sample were obtained by 
using a DB-17 column with nitrogen makeup gas at a flow rate 
of 30 mL/min. The column temperature was increased from 

Table I. Symptom Detection Algorithms and their Attributes 

Application 

Symptom Value Threshold Blank Standard Calibration Unknown 

Retention time shift Fuzzy Statistical X X X 
Spike precision* Fuzzy Statistical X X X 
Sensitivity change Fuzzy Statistical X X 
Peak tailing Fuzzy Statistical X X 
Unresolved peaks Fuzzy Statistical X 
Band broadening Fuzzy Statistical X X X 
Clipped peaks Binary One peak X X 
Negative dip after peak* Binary One neg. dip X X 
Irregular baseline drift Fuzzy Statistical X X 
Rising baseline Fuzzy Statistical X X X X 
Elevated baseline Fuzzy Statistical X X X X 
High noise Fuzzy Statistical X X X X 
Irregular spikes Binary One spike X X X X 
Ghost peaks Binary One peak X X 
Extra peaks Binary One peak X X 
No peaks Binary One peak X X X X 
Replicate precision Fuzzy Statistical X X 
Peak leading Fuzzy Statistical X X 
Surrogate precision* Fuzzy Statistical X X 
High background* Fuzzy Statistical X X X X 
Rounded peaks* Fuzzy Statistical X X X 

* Algorithms are under development. 
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80°C to 240°C at 10°C/min. The injector temperature was 
increased from 80°C to 250°C at 180°C/min, and the detector 
was held at 300°C. To generate the column bleed and column 
degradation faults, the DB-17 column was preceded by a 2-m 
carbowax megabore column, which provided a more readily 
degraded stationary phase. 

Additional standard chromatograms were generated from 
commercial Aroclor samples (Supelco, Bellefonte, PA) pre­
pared at concentrations ranging from 50 ppb to 800 ppb. Over 
400 Aroclor chromatograms were collected. The Varian 3600 
instrument that was used was equipped with a split—splitless 
injector, a DB-5 column (30 m × 0.25-mm i.d., 0.25-μm film 
thickness) (J&W Scientific, Folsom, CA), and an electron-
capture detector. The nominal helium carrier gas flow rate 
was 1.8 mL/min. The injector and detector temperatures were 
280°C and 350°C, respectively. The column oven was held at 
80°C for 1 min following injection and then increased at 
15°C/min to 350°C, followed by a 3-min hold. 

After the chromatograms were acquired, they were translated 
into the Analytical Instrument Association (ΑΙΑ) data inter­
change file format (6) for analysis by the assessment system. The 
feature extraction algorithms were developed using the Matlab 
(Mathworks, Nantik, MA) numerical computation system. 

Procedures 
Several processing steps were performed on the data before 

the application of the feature extraction algorithms: 

Filtering 
The chromatogram was filtered with an 11-tap finite impulse 

response filter to reduce noise in the signal so that the output 

the analysis assessment system. For each sample type, a dif­
ferent set of features is extracted. Three sample types are dis­
tinguished in this work: blanks, standards, and unknowns. The 
chromatograms of blank samples are expected to contain no 
peaks. Chromatograms of standard samples are expected to be 
well-characterized, with a predetermined number of peaks of 
known size. Calibration samples, which are used to define 
method calibration curves, are considered standard samples. 
Unknown samples produce chromatograms with very few 
expected features. Unknown samples are expected to have one or 
more retention time marker compounds added before analysis. 
Table I indicates the algorithms applied to each sample type. 
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sequence of the filter was a least-squares fit to the data (7-9). that lists the peak heights and widths, calculated as described 
The sampling interval and noise level of the test chromatogram above, for the peaks matching the retention times of the peaks 
were such that an 11-tap filter provided adequate filtering. that were listed in the ΑΙΑ data file. 

Peak Tables 
Peak tables were created from the filtered chromatograms. 

A very simple peak-identification criterion was used to preserve 
features in the chromatogram that are important in qualitative 
assessment. An N-point chromatogram that was filtered to 
reduce noise was denoted as the amplitude sequence x(n), 
where n = 0 to Ν - 1, and its associated time sequence was 
denoted as t(n). The initial peak-detection criterion was used to 
define a peak as any sample in x(n) that has an amplitude 
greater than samples on both sides of it: x(n - 1) < x(n), and 
x(n) > x{n + 1). Similarly, a valley was defined to be any sample 
in x(n) that has an amplitude less than samples on both sides 
of it: x(n - 1) > x(n) and x(n) < x(n + 1) (The case of equal 
amplitude is considered in the following discussion of clipped 
peaks.). When this simple criterion is used, it is not unusual to 
detect up to 4000 peaks in a chromatogram. 

The ith retention peak in x(n) was parameterized by its 
amplitude and time, pr(i) and tr(i); the amplitude and retention 
time of its leading valley, νa(i) and t a(i); and the amplitude and 
retention time of its tailing valley, Vb(i) and tb(i). The retention 
times of the peak and valleys were obtained by using the deriva­
tive of the chromatogram (2). 

Peak width was calculated after peak detection. The width of 
a single peak was determined as follows. First, the highest 
valley v(i) = max[Va(i), vb(i)] on either side of the ith peak p r(i) 
was found. Next, the time locations of both the leading and 
tailing sides of the peak, t a(i) and t b(i), respectively, were found 
so that the amplitude at both locations was the fraction Wf of 
the difference between the peak and the highest valley: 

x [ t α ( i ) = x [ t β ( i ) ] = Wf ×[pr(i)-v(i)] Eq l 

The peak width was then estimated to be wr(i) = tβ(i) - tα(i). 
In most cases, the fractional peak width was set to Wf = 0.5 so 
that peak widths were estimated at 50% peak height. 

The relative height of the ith peak was defined as the distance 
between the peak amplitude pr(i) and a point that is the inter­
section of a line connecting the leading and tailing valleys and 
the line t = tr(i). The area of the ith peak is the product of the 
width of the peak at 50% and its relative height. 

Peaks in the peak table that were generated as described 
above were matched to peaks in the peak table that were gen­
erated by the instrument data analysis software (available in the 
ΑΙΑ data file). The peak tables that were generated by the 
instrument data analysis software (the Varian GC Star soft­
ware) were not used in this qualitative assessment because 
the peak-detection and peak-filtering parameters exclude chro­
matogram features that are critical for qualitative assessment. 
However, by matching the peaks in the peak table above to 
peaks that are detected by the instrument software, the peaks 
(and peak parameters) that are important to the chemist can be 
identified. For example, the peak-detection thresholds in the 
instrument software describe the expected intensity of the 
experimental data. A second "system peak table" was created 

Retention Time Markers 
Retention time markers (RTMs) are peaks that result from 

compounds that are added to the sample before injection. Typ­
ically there are two or three RTMs in a chromatogram. The 
detection of several symptoms was based on the analysis of 
RTM peaks. Identification of RTMs in a chromatogram con­
sisted of a series of steps in which peaks that were potential 
RTMs were first identified, then peaks that were clearly not 
RTMs were eliminated, and finally adjacent peaks were clus­
tered to form the RTMs. 

Initially, peaks that were found within 15 s of the expected 
retention time of the RTM were selected as candidate RTMs. If 
no peak was found, the absence was noted. If one or more 
peaks were found in the 15-s window, the peak closest to the 
expected retention time was selected. Due to potential splitting 
of the RTM peak (resulting from an instrument malfunction), 
peaks that were adjacent to the candidate RTM were inspected 
for inclusion into the final RTM parameter estimates. For an 
adjacent peak to be included in the RTM, two conditions were 
required: the amplitude of the peak must have been within a 
factor of the amplitudes of the calibration RTMs, and the width 

Figure 1. Information flow through the analysis assessment system. 
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of the peak must have been within a factor of the widths of the 
calibration RTMs. If multiple peaks were included in an RTM, 
the retention time and amplitude were the average of all the 
peaks that were included. The peak width and area were esti­
mated by using the algorithms previously described. A refer­
ence file that contains the nominal time locations, amplitudes, 
widths, and areas of the RTMs was created by using standard 
samples prior to processing the unknowns. 

Baseline Estimation 
The baseline of a smoothed chromatogram was estimated by 

averaging splines constructed from sets of local minima. 
Averaging splines constructed in this manner reduced the ten­
dency of localized oscillations to occur, as is often found in 
splines that are constructed from a single set of minima. In the 
smoothed chromatogram x{n), the first point of the chro­
matogram was x(0) and the last point was x(N- 1). A set of 
local minima was formed by partitioning x(n) into Μ con­
tiguous, nonoverlapping segments and selecting the minimum 
value of x(n) within the segment. The number of points in 
each segment was given as MB = [N/M],, and the last segment 
contained the remainder of the points. 

The segment of x(n) in the mth segment was denoted as 
xm(n). The set of local minima was 

Eq 4 

Splines continued to be formed in this manner for Ρ shifts 
until the first segment of the (P - 1)TH shift overlapped the 
second segment from the 0th shift. The baseline estimate was 
found by averaging all Ρ splines: 

Eq 5 

The value for the number of samples in a segment was set to 
MB = R(0.03 × N), and the number of samples in a shift was set 
to MS = R(MB/7), where R is the rounding operator. For the 
chromatograms used in this study, these values were found to 
yield good results. The splines used to construct the baseline 
estimate were produced by the Matlab function "splineO". 

Creating Fuzzy Values 
To interface with the expert system, the output of a symptom-

detection algorithm was required to be either a binary value or 
a fuzzy value in the range 0-1. For binary symptoms, the value 

of 0 indicated that the symptom was not present, and the value 
of 1 indicated that the symptom was maximally present. For 
symptoms that produce nonbinary values, fuzzy values were 
used to indicate the varying intensity of the symptom (The 
type of output that was provided by each algorithm is listed in 
Table I.). Mapping was required in order to convert the output 
of the algorithm to a fuzzy value in the appropriate range. The 
output of a symptom detection algorithm was denoted as X, 
maximum and minimum thresholds were denoted as Tmax and 
Tm[n, and the output of the mapping was denoted as V. A linear 
mapping of X to V that meets the range requirement on the 
fuzzy value is given by the following equation: 

Eq 6 

The maximum and minimum thresholds were based on the 
mean (mx) and standard deviation (σχ) of the calibration data 
and on a reference value (X r e f). The reference value represents 
the nominal value of the output; for example, Xref = 1 for peak 
leading or tailing, and X r e f = 0 for retention time shift or sen­
sitivity change. If mx ≥ Xref, the maximum and minimum 
thresholds are given by the following equations: 

Eq 7 

The number of significant figures in the fuzzy output value 
was rounded to the nearest 0.01. 

Symptom Algorithms 
Raw output from symptom-detection algorithms was 

denoted as Xzz, where zz is a designator for the symptom. The 
mapped output from the algorithms was denoted as Vzz. 

Clipped Peaks 
A clipped peak occurs when the amplitude of the peak 

exceeds the maximum amplitude allowed by the detector. Since 
filtering can introduce artifacts into the chromatogram that 
make detection of clipped peaks difficult, this algorithm was 
applied to the chromatogram before it was filtered. Clipped 
peaks were detected by normalizing the unfiltered chromato­
gram and searching for regions in which the amplitude equaled 
1. If more than five sequential points in the normalized chro­
matogram had an amplitude of 1, a clipped peak was detected, 
and the binary symptom value V c p = 1. If clipped peaks were 
detected, the chromatogram was deemed unsuitable for analysis. 

508 

Eq 2 

A spline was then constructed from this set of local minima: 

Eq 3 

Next, the set of segments was shifted by MS points, and a new 
set of local minima was formed. The ith set of local minima, 
formed from the ith shift, was denoted as {xi}. The spline 
formed from this set of local minima was 

Eq 8 

If mx < Xref, which often occurs in the leading peaks symp­
tom, the thresholds and symptom value must be reflected 
around Xref in order for the mapping to apply. In this case, 

Eq 9 

Eq 10 

Eq l l 
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In this event, symptom processing halted, and a set of prese­
lected values was written into the symptom file (2). 

Irregular Spikes 
Irregular spikes were detected by comparing the widths and 

relative heights of peaks in the system peak table with the 
average widths and average relative heights of the calibration 
RTMs, (Wr) and (Hr) (brackets (Xr) denote an average opera­
tion). For computational efficiency (to rapidly screen up to 
4000 peaks in the peak table), the peak widths that were used 
in this algorithm were base-to-base and were denoted as 
wr*(i). By definition, spikes are very narrow peaks, thus 
wY* (i) wtr(i). Relative peak heights were computed by using 
the peak height estimation algorithm previously described. 
The criterion for the detection of irregular spikes was as 
follows: If wr* (i) ≤ 0.125 × (Wr) and hr(i) ≥ 0.2 × (Η) for any 
peak i, then the binary symptom value is 1 (Vis = 1); otherwise, 
Vis = 0(10). 

No Peaks 
Peaks from all samples except blanks were expected in the 

system peak table that was generated from chromatograms. If 
there were no entries in the system peak table for standard, cal­
ibration, or unknown chromatograms, the symptom value 
Vnp - 1; otherwise, Vnp = 0. If this symptom was detected, pro­
cessing terminated, and a set of preselected values was written 
into the symptom file (2). 

Ghost Peaks 
Ghost peaks are peaks that appear when there should not be 

any peaks (e.g., peaks in the chromatogram of a blank sample). 
The ghost peak algorithm was used to scan the peak table to 
find any peaks that were detected in a blank sample. If peaks 
were detected, the binary value for this symptom was set to 
(VGP = 1). 

Extra Peaks 
Extra peaks occur when peaks that result from components 

of a previous sample appear in the chromatogram. They are 
distinguishable from normal peaks in that their widths tend to 
be much larger or much smaller than the widths of neigh­
boring peaks. The algorithm used to detect ghost peaks was a 
least-median-squares procedure (11). A least-median-squares 
procedure is a modification of a least-squares procedure that 
reduces the disruptiveness of outliners in the data. 

When temperature programming is used in GC, the peak 
widths in chromatograms tend to increase quadratically with 
retention time. Thus, the model that was used for the extra 
peak algorithm is a quadratic. To fit the observed changes in 
peak width, the quadratic should be concave upwards, centered 
at the origin, and greater than 0 at the origin. With a quadratic 
of the form w(t) = at2 + bt + c, the preceding conditions result 
in the restrictions a > 0, b = 0, and c> 0. Two peaks were ran­
domly selected from the system peak table and the base-to-base 
widths of the peaks were used to solve for the parameters (a,c) 
of the quadratic. If the criteria a > 0 and c> 0 were not met, 
two more peaks were randomly selected. Once acceptable 
parameters were found, the median of the squared difference 

between the quadratic and the peak widths was computed. 
This process was repeated 100 times, and the parameter set 
that minimized the difference (tf*,c*) was retained. The stan­
dard deviation σep between the quadratic w0(ti) = a*ti2 + c* and 
the model peak widths for every peak, wr* (t i), was computed 
next. If the computed peak width was more than 4 standard 
deviations different than the actual peak width, w*r (ti) > w0(ti) 
+ 4σep or w*r (ti) < w0(ti) - 4σep for any peak i, then the binary 
symptom value for extra peaks was set to 1 (Ve p = 1). 

High Noise 
The first 20 s of a chromatogram are generally devoid of 

peaks and can therefore be used to monitor detector noise. 
Noise in a chromatogram consists of two components: baseline 
drift and a random component superimposed on the baseline. 
A segment Xf(n) = {x(n)\0 ≤n ≤nf was extracted from the 
start of the chromatogram. The value nf was selected so that 
t(nf) = min[tr(1)/2,Tf] where t r ( l) is the location of the first 
detected peak, and Tf = 10 s. A linear regression was performed 
on x f(n), and the 95% confidence interval of the slope b ± θb and 
error standard deviation s were computed. A noise estimate 
for the segment was computed as N0 = 3s. These three values 
were compared to corresponding average values in the cali­
bration data. If N0 > X(N0) or b - θb > X(b - θb> or b + θh > X(b 
+ θb), where X = 3 for average values greater than 0 or X = 0.3 
for average values less than 0, then Vhn was set to 1. The 
threshold, X, was 3.0 when the average value was positive and 
0.3 when the average value was negative to ensure that the 
product of the threshold and the average value was larger than 
the average value. 

Rising Baseline 
A rising baseline is detected if the amplitude of the tail of the 

baseline is substantially larger than the amplitude of the front 
of the baseline. In this algorithm, the average values of the 
front and tail sections of the chromatogram were used as base­
line estimates. As in the high noise algorithm, a segment from 
the front end of the chromatogram was extracted: Xf(n) = 
{x(n)\0 ≤n≤nf), where nf was previously selected. A segment 
from the tail end of the chromatogram was selected in a sim­
ilar manner: xt(n) = {x(n)\N- l-nf<n<N-l}, where Ν is 
the number of samples in the chromatogram. The average of 
the front section was denoted as F = (xf(n)), and the average of 
the tail section was denoted as Τ = (xt(n)). If F > 0 and Τ > 3F, 
or i f F ≤ 0 and T>03F, then 
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Eq 12 

Otherwise, Xrb = 0. The output value for the rising baseline 
symptom, V r b , was found by mapping Xrb into a fuzzy value 
with Xref = 0. 

Irregular Baseline 
A line was fit to the averaged spline baseline estimate, b(n). 

The error standard deviation s of the linear regression was 
computed. If s > Tib, where Tib is a threshold, then Vib = 1; 
otherwise, Vib = 0. Threshold Tib was three times the average 
error standard deviation of the same calculation performed on 
the calibration chromatograms. 
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Elevated Baseline 
Elevated baseline is an indication of the amount of offset left 

on the autoscale system of the chromatographic instrument. 
The linear regression on the segment Xf(n) was computed, and 
the upper confidence level of the intercept parameter, Xeb = b 
+ θb, was compared to the threshold The threshold is the 
average upper confidence level of the calibration chromato­
grams Τeb = (b + θb). If Χeb > 10Teb for Τeb> 0 or if Xeb > 0.1T e b 

for Teh ≤ 0, then Veb = 1; otherwise, Veb = 0. 

Peak Leading and Tailing 
Several research groups have published algorithms for fitting 

and determining the parameters of exponentially modified 
Gaussian peaks and overlapping peaks (12). In this work, 
simpler algorithms were used because it is common for chro­
matograms from unknown samples to contain an undeter­
mined number of overlapping peaks. Simpler algorithms were 
also used because a significant percentage of the peaks in a 
chromatogram did not exhibit Gaussian profiles. Estimating 
parameters of these peaks by using a Gaus­
sian model would not have been appropriate. 
In this work, simpler algorithms worked 
well for providing the information needed. 

Peak asymmetry (skew) was estimated by 
using Equation 1 and setting Wf to 10%. 
The leading time is defined as Ai = tr(i) -
tα(i), the tailing time is Bi = tβ(i) - tr(i), 
and the asymmetry is Si = Bi/Ai. Peaks with 
Si < 1 are leading peaks, and peaks with 
Si > 1 are tailing peaks. The value of tailing 
peaks was computed by averaging the skew 
values of all leading peaks, X1p = <Si> V Si 

< 1, and the tailing value is computed by 
averaging the skew of all tailing peaks, Xtp = 
<S i> V Si > 1. Output values V1p and Vtp for 
leading and tailing were determined by 
applying the fuzzy value mapping to X1p and 
X t p with X r e f = l . 

widths at half the height of peaks toward the tail end of a chro­
matogram are significantly greater than the full widths at half 
the height of peaks at the front end of the chromatogram. The 
value for band broadening was computed as 

Eq 14 

where Wr(N) is the width of the last RTM, and W r(l) is the 
width of the first RTM. The lower threshold is the mean of the 
band-broadening values that are found from analysis of the cal­
ibration chromatograms. The upper threshold is the mean 
plus twice the standard deviation of the band-broadening 
values that are found in the calibration files. The output value 
Vbb was found by mapping Xbb into a fuzzy value with X r e f = 0. 

Replicate Precision 
Replicate precision and reproducibility is a measure of how 

closely a chromatogram matches a reference chromatogram. A 

Retention Time Marker Shift 
An RTM shift occurs when the retention 

times of the marker peaks differ from reten­
tion times in the calibration chromatograms. 
The average deviation of the locations of the 
RTMsTr(i) in the chromatogram being eval­
uated from the expected retention time Tr(i) 
was calculated with the following equation: 

Figure 2. (A) A nominal chromatogram of the pesticide mixture. (B) A chromatogram of the pesticide 
mixture produced by an instrument with low makeup gas flow. The circles on the plots are the expected 
positions of the RTMs. 
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Eq 13 

If the ith retention time marker was not 
found, Tr(i) was set to the largest allowable 
retention time shift of 15 s. The value for 
retention time shift Vrt was found by map­
ping Xrt into a fuzzy value by using Xref = 0. 

Band Broadening 
Band broadening occurs when the full 
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reference chromatogram was denoted as xr(n). The fractional 
change in total chromatogram area from xY(n) to x(n) was 
computed in the following equation: 

Eq 15 

The output value Vrp was found by mapping Xrp into a fuzzy 
value with Xref = 0. 

Sensitivity Change 
The total sensitivity change was found by averaging the sen­

sitivity change over all retention time peaks. The sensitivity 
change for the ith retention time marker was 

Eq 16 

The average sensitivity change was Xsc = (S(i)). If the ith 

retention time marker was not found, the area was set to 

Table II. Symptom Files for the Chromatograms in 
Figure 2B 

Sample information 
Sample name N/A 
Sample i.d. 0 
Sample type Calibration 

File information 
File source GCProcCalibration v2.1 
Retention time file name MU_FL_D.RTM 

Induced cause 
Induced cause Makeup gas loss 
Severity 1000.0 

Symptoms 
Clipped peaks 0.000 
No peaks 0.000 
Rising baseline 1.000 
Irregular baseline 1.00 
Elevated baseline 0.000 
Tailing peaks 0.000 
Leading peaks 0.180 
Unresolved peaks 0.000 
Ghost peaks -2.000 
Extra peaks 1.000 
Negative dip after peak -2.000 
Irregular spikes 0.000 
Sensitivity change 1.000 
Retention time shift 0.520 
Band broadening 1.000 
Spike precision -2.000 
Surrogate precision -2.000 
Replicate precision 1.000 
High noise 1.000 
High background -2.000 

Âr(i) = 4(A r(i)), which maximized the output value of this 
symptom. The output value for sensitivity change, X s c , was 
found by mapping Xsc into a fuzzy value with Xref = 0. 

Unresolved Peaks 
The efficiency of a chromatographic system is expressed in 

terms of its resolution. The resolution, Rs, is defined by the 
separation of two peaks. Assuming the peaks are Gaussian, the 
resolution for the ith peak can be expressed as 

Eq 17 

where tr(i) and tr(i + 1) are the retention times of two adjacent 
peaks, and wr(i) and wr(i + 1) are the corresponding widths at 
half the height of the peaks (13). Resolution was computed for 
all peak pairs in the chromatogram from a standard sample. 
The minimum resolution value between two peak pairs was 
considered to be the measure of unresolved peaks 

Eq 18 

The output value V u p was found by mapping Xup into a fuzzy 
value with T m i n = 0.5 R m i n and T m a x = R m i n , where Rmin is the 
minimum resolution between peak pairs in the calibration 
data. 

Results and Discussion 

The algorithms were developed iteratively, in consultation 
with experienced chromatographers. Each algorithm was 
individually tested and validated qualitatively by comparing the 
algorithm output with the opinions of the experienced chro­
matographers. Agreement between the experienced scientists 
and the detection of the symptom with use of the algorithm was 
considered validation. Figure 2 illustrates a standard chro­
matogram of the five pesticides and a chromatogram of the 
same sample that was generated with a low makeup gas flow. 
Table II contains the output of the symptom detection algo­
rithms applied to the bottom chromatogram in Figure 2 (a 
value of -2 in Table II indicates that the chromatogram was not 
processed with the corresponding algorithm). 

The symptom detection algorithms were developed as part of 
an automated analysis assessment system described in Figure 
1. The symptom detection algorithms were further refined 
and validated as they were integrated with the expert system. 
Chromatograms that were generated from instruments with 
induced faults were processed by the analysis assessment 
system. Successful tests of the analysis assessment system 
occurred when the system diagnosed the fault that was induced 
in the instrument when the chromatogram was generated. 
When there was a discrepancy between the system diagnosis 
and the known instrument fault, the diagnosis of the expert 
system was evaluated by chromatography experts, and the 
symptom detection algorithms or the expert system knowledge 
was modified. Algorithm modifications included revising 
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algorithms or adjusting threshold limits, and expert system 
modifications included revising the knowledge table and the 
knowledge processing. 

A detailed discussion of the expert system that was used in 
the fault diagnosis system appears elsewhere (5). After exten­
sive refinement of the expert system knowledge base, the in­
duced fault in 95% of the faulty data presented to the analysis 
assessment system was correctly identified by using the system. 

The analysis assessment system is currently being installed 
in an automated environmental testing laboratory (14). The 
expert system is being refined and tested on a broader range of 
instrument faults (15). Ongoing work includes development of 
algorithms for rounded peaks as well as spike and surrogate 
precision. An alternative RTM algorithm is being developed to 
trend changes in the marker retention time in each file run 
through the system. Relative trending will be pursued as a 
compliment to the existing algorithm that is used to monitor 
absolute deviation in retention time from the calibration files. 

Conclusion 

Algorithms have been written for use in recognizing features 
in chromatograms that correspond to symptoms of instru­
ment faults. These symptoms are used by experienced chro-
matographers to diagnose the cause of an analysis failure. The 
feature extraction algorithms are required to provide input 
for an expert system-based automated analysis assessment 
system that uses the detected symptoms to diagnose the 
underlying fault. This expert system captures the heuristic 
troubleshooting knowledge from the experts in the form of "if 
χ and y, then z" rules that express the relationship between 
symptoms and faults. These algorithms are used to provide the 
input antecedents in the rules and are processed through the 
knowledge base by the inference engine. 
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